If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10d^2=40
We move all terms to the left:
10d^2-(40)=0
a = 10; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·10·(-40)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*10}=\frac{-40}{20} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*10}=\frac{40}{20} =2 $
| -5n+21=3+4n | | 2.48x=8.1096 | | 10x-12=-14 | | 6=b-518 | | (6x²+6x)=6x | | 19x-2=16x+2+105 | | -4x+15-x=2(6-x)-x | | -3(x+6)=3(3x+6) | | 4x-1/2=32/4 | | 15=12x=50+5x | | m+9=115 | | 8+2x=7+2x | | x/100=0.3x | | 140=10x+120 | | 5x+1.2=13.7 | | 19x+16=180 | | 8+9=s | | -4.8+9x=6.4x-7.9 | | 2x-20=4x-90 | | 4(2x-1)=3(10-3x) | | 23=x/2+13 | | 1−2x+5=6 | | (4x²+x)=x | | 6q+3-3q=30 | | 40=10x-10 | | 5r-4+7r=44 | | 7.1-5x=5-8.2x | | E^2^x=19 | | 19=-7s | | 7y+3-2y=13 | | x/5-5=11 | | -7(2x+6)=-4(9+4x) |